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Momentum-Balance Aspects of Free-Settling Theory. 
1. Batch Thickening 

D. C. DIXON” 
DEPARTMENT OF CHEMICAL ENGINEERING 
CARNEGIE-MELLQN UNIVERSITY 
PITTSBURGH, PENNSYLVANIA 1521 3 

Abstract 

The theory of batch gravity thickening of an initially free-settling slurry is 
considered, taking into account the momentum-balance relationships for the 
system. It is concluded that graded-concentration zones which develop during 
the process must lie in the compression concentration range; retarding forces 
necessary to produce increase in concentration are not present in free settling. 

INTRODUCTION 

Since the publication of the classical paper of Coe and Clevenger (I), 
it has usually been considered that the concentration of a slurry can fall 
in one of two basic ranges: “free settling” and “compression.” In the 
free-settling range the flocs (or “particles,” if the material is not floc- 
culated) do not exert forces on each other, while in compression they do. 
The boundary between these two ranges is the “critical concentration,’’ 
which is conceived as the concentration at which flocs just touch each 
other. Below the critical concentration the slurry is in free settling; above, 
it is in compression. 

During batch settling of an initially uniform, dilute (i.e., free-settling) 
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I 72 DIXON 

slurry, Coe and Clevenger observed that four zones are usually formed. 
Labeled A, B, C, and D from the top, these were identified as: clear- 
liquid zone, initial-concentration zone, graded-concentration zone, 
and sediment zone. They assumed that Zone C (and, of course, Zone B) 
is in free-settling, while Zone D is in compression. (For Zone A to be com- 
pletely clear, it is necessary that the initial concentration is not so low 
that segregation of different-sized particles occurs.) After settling is com- 
plete, only Zones A and D remain. Later writers adhere to this qualitative 
view of the process of batch thickening. 

Coe and Clevenger assumed that in free settling the settling velocity 
of the flocs (in a given slurry) is a function only of the solids concentra- 
tion. This assumption was the basis of their method (still used) for deter- 
mining the area required for a given continuous thickening operation. 
Much later, Kynch (2) used the same assumption as the basis of a detailed 
analysis of batch thickening. This analysis predicted the formation of a 
graded-concentration zone (Zone C) between the initial-concentration 
and sediment zones, under certain circumstances. (Coe and Clevenger 
had remarked that Zone C does not always form.) 

More recently, detailed analyses of slurry behavior in compression 
have appeared (e.g., Refs. 3-5). In addition to material balances, these 
analyses have involved the momentum balance equation; that is, con- 
sideration of the forces acting in the system. This is a consideration which 
is not involved in the analysis of free settling when the settling velocity 
is assumed to be determined by the concentration. The purpose of the 
present work is to reconsider the theory of batch thickening for cases 
where the initial slurry concentration is in the free-settling range, taking 
into account the momentum balance relationships for the system. This 
approach reveals aspects of the theory which have not been considered 
previously, and raises doubts about the logical consistency of presently 
accepted analyses. 

BASIC ASSUMPTIONS A N D  EQUATIONS 

Throughout the discussion, the following assumptions will be made : 

(1) The container has constant cross-sectional area. 
(2) The slurry properties are uniform and constant; that is, the flocs 

are of uniform size (no segregation of different-sized particles) 
and solid and liquid properties are constant (isothermal con- 
ditions). 
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FREE-SETTLING THEORY. I I73 

(3) The flow is vertical, and horizontally uniform (negligible wall 
effect). 

(4) The forces which can act on the solid particles are gravity (al- 
lowing for buoyancy), liquid drag due to motion relative to the 
liquid, and interaction forces exerted by adjacent solids. 

(5) The slurry can be treated as a continuum; that is, a continuous 
liquid phase and a continuous solid phase which interact with 
each other. 

Assumption 1 can easily be removed, if desired, but this is not neces- 
sary in the present discussion. The other assumptions are quite standard, 
although they are not always stated explicitly. The phrase ‘fcan act” 
should be noted in Assumption 4, indicating that all three forces are not 
necessarily acting at every point (the first, of course, always acts). 

Assumption 5 leads to the definitions given under Symbols. In particular, 
the following are noted : 

(a) Fluxes (4)  are defined throughout as volumetric fluxes; that is, 
volumetric flow rate divided by total cross-sectional area, which 
is the same as “superficial velocity.’’ There are three fluxes: 
solid, liquid, and total. The total flux is also the volume-average 
velocity of the slurry. 

(b) Solids concentration is defined as volume fraction (f), and thus 
liquid volume fraction is everywhere equal to (1 - f). 

(c) The velocity (relative to the container) of each phase is calculated 
as its flux divided by the local volume fraction occupied by the 
phase; e.g., solids velocity, u = 4/f. The velocity of the solids (u) 
relative to the slurry is equal to u - 4t .  

(d) The interaction force between adjacent parts of the solid phase 
is described by compressive stress, z, based on total cross-sectional 
area; that is, the force acting between adjacent solid layers per 
unit of total cross section. 

The basic equations describing the thickening process are the total 
material balance, the material balance for the solids (or the liquid), and 
the momentum balance for the solids. The material balances are simply 
volume conservation statements (volume is conserved since both liquid 
and solids have constant density). The solids momentum balance is a 
statement of Newton’s second law of motion. The momentum balance 
for the liquid is not required unless the forces acting on the bottom of 
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I74 DIXON 

the container (or the power requirements for the sludge pump in a con- 
tinuous thickener) are to be determined. No energy balance is required 
since isothermal conditions are assumed. 

The equations are listed in Table 1 and derived in Appendix A. (Most 
of these equations, or their equivalents, have been given by previous 
writers.) Only the total material balance equation is algebraic; the other 
equations are differential. The total material balance states simply that 
the total volumetric flux (q5J is the same at all levels, and this leads to Eq. 
(1) which is the relation between the velocity of the solids (u*) relative to 
the liquid, and the velocity of the solids (u) relative to the slurry. The two 
differential equations can be written in a variety of forms, depending on 
whether they apply to a plane which is stationary (Eulerian), or moving 
with the local solids velocity (Lagrangian), or having fixed concentration 
(Kynchian), etc. The equations labeled “general” are derived without 
specifying the type of plane being considered, and have no physical 
meaning as they stand. However, the equations for Eulerian, Lagrangian, 

TABLE 1 
Basic Continuum Equations 

Total material balance 

Solids material balance 

u = (1 - f ) u *  

dx af 
General $= dt + Z(ZL 

Eulerian (ax = -kdt 
Lagrangian (a, = -f 

Kynchian (%If = ($II 

a4 

g - 4 2  - 41 
dt f2 -fi 

Discontinuity 

Solids momentum balance 
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FREE-SElTLING THEORY. I I 75 

and Kynchian planes derive directly from the general equations by apply- 
ing the appropriate constraint. For example, the Eulerian equations are 
obtained by substituting dx/dt = 0 in the general equations. 

It is also convenient in many cases to use as spatial coordinate the 
volume of solids per unit area (s) below a Lagrangian datum plane, instead 
of the distance ( x )  below an Eulerian datum plane, and to use the dilution 
(r = lif) instead of the volume fraction ( f ) .  The equations in Table 1 have 
been written in terms of x and f: The equivalents in terms of s and r can 
be obtained by use of d f  = -dr/r2,  ds = f dx at constant t ,  and dsldt 
= f(dx/dt - u) .  The equations applying to a discontinuity, if such occurs 
in the system, are also given in Table 1, and are discussed in the next 
section of the paper. 

It will be noticed that the liquid pressure gradient does not appear in 
the solids momentum balance, although the pressure does act, of course, 
on the solids. The pressure gradient can be expressed as the sum of three 
components : 

(1) Hydrostatic pressure gradient pig. 

(2) Gradient required because of the drag on the solid phase, - Fd f 
[the factor f is required because Fd is defined as the drag force per 
unit volume of solids]. 

(3) Gradient required to accelerate the liquid. 

The effects of the first two of these are included in the solids momentum 
balance; the first as the buoyancy correction in F,, and the second as the 
drag term Fd. The third represents the unbalanced force required to 
accelerate the liquid under unsteady-state conditions. This does not result 
in any force on the solids. If it did, the solids would exert an equal and 
opposite force on the liquid (third law of motion), thereby counteracting 
the force which, by definition, is unbalanced. 

The definitions of “free-settling,” “compression,” and “critical con- 
centration” given in the Introduction in no way affect the validity of the 
equations. In free settling z is simply set equal to zero. The equations in 
Table 1 cannot be solved alone; also required are equations describing 
slurry properties. Equations relating the drag force and compressive 
stress to the condition of the slurry are needed, and these will be introduced 
below, when required. To this point the assumptions made are the five 
listed above. 

In connection with the basic assumptions, it is important to note 
that the horizontal-uniformity assumption (No. 3) means that effects such 
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I76 DIXON 

as short-circuiting and channeling are not considered, while the constant 
properties assumption (No. 2) exludes effects due to changes in degree 
of flocculation, etc. during the settling process. The discussion deals 
solely with what might be termed “basic” theory, and comparisons will 
only be made with previous analyses which were based on the same as- 
sumptions as listed above. 

CONDITIONS AT A DISCONTINUITY 

In the following discussion the possibility of the formation of discon- 
tinuities in the slurry arises, and so the conditions existing in such a 
situation need to be considered. At a discontinuity there is a jump in either 
concentration or velocity, and usually both. As shown by the material 
balance equation (Eq. 6),  a plane of discontinuity cannot be stationary, 
except where there is a discontinuity in concentration but not in solids 
flux, which is an unlikely situation. 

Kynch (2) used Eq. (6) in his analysis, but not the momentum balance 
equation (Eq. 11) since force action was not considered. In deriving the 
latter equation it is assumed that the drag term (Fd) is related to the 
concentration and solid and liquid velocities algebraically (rather than 
differentially). The gravitational term also satisfies this condition (it is a 
constant), and the result is that no gravitational or drag term appears 
in the momentum balance across a discontinuity. This is due to the fact 
that the total gravitational and drag force acting in a layer is proportional 
to the quantity of solids, and in a discontinuity the quantity of solids 
is zero. 

However, there is an additional component of the drag which does 
not vanish in the momentum balance for a discontinuity because it de- 
pends on the rate of change of the solid-liquid relative velocity. This is 
the “virtual-mass” term, which is effective under unsteady-state conditions 
but is zero when the relative velocity is constant. This effect does not 
appear to have been considered by writers on slurry thickening, but it 
has been the subject of some discussion in the literature on fluidization 
(e.g., Refs. 6-8). The exact form of the virtual-mass term is unknown 
at present, but there is agreement on the general form, and it effectively 
increases the magnitude of the inertial (acceleration) term in the momen- 
tum balance. To avoid unnecessarily complicating the following discus- 
sion, we will not include any specific virtual-mass term in the momentum 
equations, but simply note at this point that the effect is equivalent to an 
increase in the inertial term. This is all that is needed in the following 
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FREE-SETTLING THEORY. I I77 

discussion. More detailed discussion of the virtual-mass effect is given 
in Appendix B. Henceforth the drag term Fd will be assumed to include 
only the “ordinary,” algebraic drag, while reference to the inertial term 
will be assumed to include the virtual-mass term. 

The absence of gravitational and drag terms from Eq. (1 1) is important 
to the following discussion since it shows the momentum balance for a 
discontinuity to be a balance between inertial and compressive effects, 
no gravitational or drag terms being involved. Since there are no compres- 
sive effects in free settling, by definition, the balance further shows that 
at least one side of a discontinuity must be in compression (except in 
the unlikely event of there being no change in velocity). To produce a 
change in velocity, forces are required, and to produce an instantaneous 
change in velocity the only forces available are interparticle forces. The 
usual situation is that the solids increase in concentration and decrease 
in velocity as they pass downward through the discontinuity. Thus the 
solids undergo impact retardation as they pass through the discontinuity, 
and the solids must be in compression below the discontinuity in order to 
be able to transmit the necessary impulsive force. 

Objection might be raised to the above on the grounds that a true 
mathematical discontinuity cannot occur in a physical system; what can 
occur is a rapid change over a small but finite distance, and so gravita- 
tional and drag forces could account for the velocity change. However, 
a true discontinuity is consistent with the assumption that the slurry can 
be treated as a continuum. Both are approximations, and the former is 
a consequence of the latter. On the individual-particle level, change in 
velocity certainly can only occur through a finite distance, but if the 
continuum approximation is satisfactory (which it is usually assumed to 
be for fine particles) and it leads to the existence of a discontinuity, then 
this indicates that the contribution to the velocity change of gravity and 
drag is small and that Eq. (1 1) is correct. 

Thus consideration of the momentum balance across a discontinuity 
leads to the conclusion that the only terms in the equation are the inertial 
and compressive terms, and that the concentration on no more than one 
side can be in the free-settling range. 

CONVENTIONAL SETTLING VELOCITY ASSUMPTION 

As noted above, the usual assumption applied to the free-settling 
concentration range is that the solids settling velocity is determined solely 
by the local concentration. The settling velocity can be taken relative to 
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DIXON I 78 

the liquid or relative to the slurry; if one is a function of concentration, 
so is the other, from Eq. ( I ) .  For the purposes of the present discussion, 
it is necessary to consider the implication of this assumption in terms of 
the forces acting on the solids. 

Neither Coe and Clevenger nor Kynch discussed this question in any 
detail, and it has seldom been mentioned by other writers. Nevertheless, 
the origin of the assumption that settling velocity is a function of con- 
centration is clear. Considering first a single small particle starting from 
rest in a stationary fluid, it is known that it will very rapidly accelerate to 
its terminal velocity. Initially, the only force acting on the particle is the 
gravitational force (corrected for buoyancy), and this determines the ini- 
tial rate of acceleration of the particle. As the particle velocity increases, 
the fluid drag increases and the net force on the particle decreases. When 
the terminal velocity is reached, the gravitational force is balanced by the 
drag force and there is no further acceleration. Since the acceleration of 
the particle is very rapid (in the case of a small particle) and occurs over 
a very small distance, the acceleration effect can usually be neglected. 
That is, to calculate the time required to settle a distance of the magnitude 
which is usually involved in a thickening operation, the particle velocity 
can be taken from the start as equal to the terminal velocity, with negligible 
error. 

If a slurry is now considered instead of a single particle, the drag force 
on any particle will be greater, for the same velocity relative to the liquid, 
due to the proximity of the other particles. The higher the solids con- 
centration the greater this effect should be, and the drag is expected to be 
a function of the local concentration and the velocity relative to the 
liquid. If the acceleration effects are again assumed to be negligible, the 
gravitational and drag forces are balanced at each point in the slurry. 
Since the former force is a constant and the latter is a function of relative 
velocity and concentration, this implies a relation between the relative 
(or “settling”) velocity and the concentration. That is, at each point in 
the slurry the settling velocity is determined only by the concentration. 

Relating this result to the equations in Table 1, the Lagrangian momen- 
tum balance (Eq. 9) is the relevant equation. Since free-settling is being 
considered, z is zero by definition. Since the inertial effect is neglected, 
(dv/at>, is taken as zero. Equation (9) reduces to F, + Fd = 0. Since F, 
is constant, and Fd is a function of u andf, this gives a relation between 
u andf. 

Thus the assumption that the settling velocity is a function of concentra- 
tion in free settling is equivalent to assuming: 
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FREE-SETTLING THEORY. I I79 

(6) The drag force on the solid at any point is a function of its con- 
centration and its velocity relative to the liquid. 

(7) Inertial effects may be neglected everywhere. 

As mentioned above, few previous writers have discussed the u = u ( f )  
assumption in terms of forces. However, the few who have discussed the 
matter place the same interpretation on the assumption as given here 
(e.g., Ref. 9). Kynch (2) remarked that the assumption would only be 
expected to be valid “when the speed of propagation (of concentration 
changes) is relatively slow or the damping is great,” implying small ac- 
celeration effects. 

INCOMPRESSIBLE SLURRl ES 

When a batch of slurry is allowed to stand in a cylinder, it is clear that 
all the solids will be present ultimately in a stationary sediment resting 
on the bottom. Since the sediment is supported by the cylinder bottom 
and there is no drag force on the solids because there is no motion, 
it is also clear that each layer of solids is supported directly .by the solids 
below; that is, the sediment is in compression. During the settling process 
the sediment will build up on the bottom of the cylinder and the solids in 
each layer in it will be at least partially supported by compressive forces 
exerted by the solids below, while also being partially supported by drag 
forces. Thus it is not possible to have a batch thickening process in which 
the slurry is in free settling everywhere and at all times. 

The nearest approach to a purely free-settling batch sedimentation 
process is through the concept of an “incompressible” slurry. This ide- 
alized slurry forms a sediment which is so strong that lower layers are 
not detectably compressed to higher concentrations by the weight of the 
layers above. The sediment has a uniform concentration which is the criti- 
cal concentration. When particles first come into contact they are at 
the critical concentration, and in an incompressible slurry the particles 
never achieve a higher concentration because the application of a com- 
pressive stress, due to build-up of further sediment above, causes no fur- 
ther increase in concentration. Thus in an incompressible slurry the criti- 
cal concentration is also a maximum concentration, and the uniform 
concentration of the sediment. Also, there is no movement in the sediment, 
so that the settling velocity is zero at the maximum concentration. At 
concentrations less than the maximum, the slurry is in free settling and 
so, under Assumptions 6 and 7, the settling velocity is a function of the 
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180 DIXON 

concentration. Thus, for an incompressible slurry, the usual assumption 
is that the settling velocity is a function of concentration, being zero at 
the maximum concentration. 

This statement was the basis of Kynchs analysis (2) which is, therefore, 
effectively based on Assumptions 1 to 7, and the assumption of sediment 
incompressibility. 

KYNCH’S THEORY 

Kynch first showed that each concentration moves with a fixed, charac- 
teristic velocity. This result follows directly from Eq. (5 ) .  The solids flux 
(4,) relative to the flux induced by the bulk motion is given by d, = 4, 
+fd,,. Since does not vary with depth, substitution for d, in Eq. ( 5 )  gives 
(ax/at) ,  - d,, = (ad,,/df),. The left-hand side of this equation is the velocity 
of a plane of fixed concentration relative to the slurry volume-average 
velocity. Under the assumption that u is a function off, 9, (which is equal 
tofu) is also a function off, and so the right-hand side of the equation 
reduces to dd,,/tIf, also a function off. Thus a plane of fixed concentra- 
tion moves relative to the slurry with a fixed velocity which is characteristic 
of the concentration. (In batch thickening 4, is zero, so that the velocity 
relative to the slurry is the same as the velocity relative to the container.) 

Kynch then considered the batch thickening of an incompressible 
slurry with initially uniform concentration. In accord with the basic 
assumption u = u ( f ) ,  in the initial condition the solids will be settling 
with the velocity corresponding to the initial concentration, except on 
the bottom where the velocity is zero. Since the velocity is zero on the 
bottom, the concentration there must be the maximum concentration. 
Thus in the initial condition there is a differentially deep sediment at 
maximum concentration on the bottom, and there is a discontinuity in 
both concentration and velocity between the sediment and the initial 
concentration zone. 

Kynch took the view (not unreasonable) that the initial concentration 
discontinuity at the bottom of the cylinder could be considered to con- 
tain all concentrations between the two limits of the discontinuity (i.e., 
between the initial and maximum concentrations). Since his basic assump- 
tion led to the result that each of these concentrations moved relative to 
the cylinder with a characteristic velocity, he could show the conditions 
under which the initial discontinuity would change into a continually 
expanding zone of graded concentration lying between the uniform 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
1
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



FREE-SETTLING THEORY. I 181 

sediment and initial-concentration zones. This zone was interpreted, of 
course, as Coe and Clevenger’s Zone C. ‘Although it was soon recognized 
that the assumption u = u(f) does not generally apply to real slurries, 
which form compressible sediments, Kynch‘s analysis appeared to go a 
long way toward explaining observed batch thickening behavior. 

However, when this analysis is reconsidered, taking into account the 
momentum balance relationship for the system, one is led to doubt that 
the assumption u = u ( f )  is generally valid even for an incompressible 
slurry. Kynch’s argument centers on the behavior of the initial discon- 
tinuity between initial-concentration and sediment zones. As discussed 
above, under the heading Conditions at a Discontinuity, the momentum 
balance across a discontinuity (Eq. 11) contains no gravity or drag terms, 
while Kynch’s basic assumption is equivalent to assuming a balance 
between these two forces. Clearly, an analysis cannot be based on the 
assumption of a balance between two forces in a region where these forces 
are insignificant compared to other forces involved. 

Even if the demand of Eq. (11) that compressive effects are necessary 
for occurrence of a discontinuity is ignored, and it is assumed that a 
discontinuity can occur entirely in the free-settling concentration range, 
the assumption u = u ( f )  still requires neglect of inertial effects in a dis- 
continuous change. Since inertial effects depend on rate of change of 
velocity, and this is infinite for material passing through a discontinuity, 
inertial effects cannot be assumed to be negligible in a discontinuity, 
no matter how small the particles. A discontinuity is not a place “where 
the speed of propagation (of concentration changes) is relatively small.” 
Even if the “discontinuity” is considered to involve a rapid (but not in- 
finitely fast) change in velocity, it is still difficult to accept that u is de- 
termined solely by a balance between gravity and drag, with negligible 
inertial effects. 

A further difficulty with Kynch’s theory arises from the fact that it 
predicts under certain conditions that the initial discontinuity will form 
a graded-concentration zone with a discontinuity above and below (9). 
The upper of these discontinuities has free-settling concentrations on each 
side, which Eq. (11) does not allow. Thus even if it is argued that the 
initial discontinuity is unstable, so that after spreading a small amount 
its behavior can be calculated by assuming a balance between gravity and 
drag, making u = u(f) correct, the analysis can still lead to an inconsis- 
tency in the form of a stable discontinuity with free-settling concentra- 
tions on each side. 
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I82 DlXON 

BATCHING THICKENING OF AN 
INITIALLY-U NlFORM SLURRY 

The writer believes that the correct analysis of the batch thickening of 
an initially uniform, free-settling slurry is as follows : 

Consider first an incompressible slurry, initially uniform and at rest. 
The solids are everywhere subject to the same initial accelerating force 
(gravity minus buoyancy), except for the bottom layer, which remains 
stationary. Except near the bottom, all solids undergo the same accelera- 
tion and attain the same velocity. As the velocity increases the drag 
increases, and the terminal velocity corresponding to the initial concen- 
tration is rapidly attained. At this stage the solids are subject to no net 
force. 

At the bottom of the container the uniform (incompressible) sediment 
builds up as solids arrive from above. As the solids strike the top of the 
sediment their concentration jumps to the maximum concentration and 
their velocity jumps to zero. The force necessary for this jump in velocity 
is provided by the reaction from the bottom of the container transmitted 
through the sediment. The compressive stress acting on the top of the 
sediment is given by Eq. (1 1) as pf,fiv2/( f, - A), wheref, = sediment 
concentration, fi = initial concentration, and 0 = solids velocity in the 
free-settling zone (which rapidly approaches the terminal velocity). 

The question is : “Can a concentration gradient propagate upward 
from the sediment into the settling zone?,” and the answer is “No.” For 
an increase in concentration to occur in any layer in the free-settling 
zone, a negative velocity gradient must develop (Eq. 4). This means, in 
turn, that each layer must be reduced in velocity as it approaches the 
sediment, and this requires a retarding force. Hence the question now is 
whether each layer can encounter a retarding force before it is retarded 
by impact with the sediment. Clearly, it cannot. Starting from rest, the 
settling layers experience an accelerating force which rapidly approaches 
zero as the terminal velocity is approached. Thereafter, the net force 
remains at zero until the layer is retarded on striking the sediment. If 
the solids were to experience a retarding force before reaching the sedi- 
ment, it would have to be due to an increase in the drag force, since the 
gravitational force is constant and there is no compressive effect in free 
settling. For the drag to increase would require an increase in concentra- 
tion (but that is the effect which is sought, and cannot simultaneously 
be a cause), or an increase in velocity (but that would result in a decrease 
in concentration). Thus there is no retardation until the sediment is 
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reached and no increase in concentration within the settling zone. The 
conclusion reached is that the settling is always “Type I”; that is, during 
.the process only two solids zones appear, the initial-concentration Zone 
B and the sediment Zone D. Zone D increases in depth as it is fed with 
solids from Zone B, and the process finishes when Zone B is exhausted. 

Once again, objection might be raised to this argument by those who 
are not prepared to adhere strictly to the consequences of the continuum 
assumption. It might be argued that if one considers an individual particle 
approaching the sediment, its “concentration” will increase as it ap- 
proaches the particles at the top of the sediment, with the result that the 
drag on it increases, and so it is subject to retardation before reaching the 
sediment. While this is a valid noncontinuum view, it does not necessarily 
show that a concentration gradient will spread upward continually into 
the settling zone, which is predicted by the continuum argument based 
on the u = u( f )  assumption. As already discussed, the discontinuity 
between Zones B and D is an approximation which is a consequence of 
the continuurn approximation. An individual particle will be retarded 
over a finite distance, but this distance could be very small and might not 
increase as the process proceeds. Since the continuum analysis leads to 
the conclusion that the initial discontinuity between initial-concentration 
and sediment zones remains during the process, the logical conclusion 
is that the retardation distance is, in fact, small and not continually 
increasing. 

Further support for this argument is given by a study of a simplified, 
noncontinuum slurry model, previously reported (10). In this model, 
individual particles were considered during sedimentation of an initially- 
uniform, incompressible slurry. When inertia was neglected in the equa- 
tions describing the system, a graded-concentration zone spread upward 
from the sediment in certain cases, in agreement with Kynch‘s analysis. 
However, when inertia was included in the equations, no graded-concen- 
tration zone spread upward, only a thin, constant-thickness particle- 
retardation layer was formed, in agreement with the continuum arguments 
given above. 

It should be noted that the above arguments do not deny that inertial 
effects are usually very small, so that retarding forces necessary for 
concentration increase are also small. However, small or not, a retarding 
force is nevertheless required to produce an increase in concentration, 
and is not available in free settling. 

The argument is not essentially changed when extended to include 
slurries which form compressible sediments. In such a case, lower layers 
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will be compressed to higher concentrations as the sediment builds up 
because of the increasing weight of solids above. The compressive stress 
acting at a given level in the sediment is determined by the total submerged 
weight of solids in the sediment above minus the total drag force acting 
on the solids above, plus small contributions from the inertial effect and 
the impact stress acting on the top surface of the sediment as free-settling 
particles enter the sediment. Thus a concentration gradient develops in 
the sediment, with the concentration increasing downward. 

The development of a concentration gradient in the sediment has no 
qualitative effect on the behavior of the free-settling zone. By the same 
argument as given in the preceding paragraphs, there will be no develop- 
ment of a concentration gradient above the sediment because there is no 
force available for solids retardation before reaching the sediment. As 
the solids are retarded by impact on the top of the sediment, the stress 
acting on the sediment will be still given by Eq. (1 1); the only difference 
is that the solids velocity is no longer zero at the top of the sediment. 

For batch thickening of a compressible slurry, it is concluded, there- 
fore, that there will basically be only three zones: clear liquid, initial- 
concentration, and sediment. Only the sediment will contain a concen- 
tration gradient, as a result of the compression process, and Zones C 
and D of Coe and Clevenger must both be part of the compression zone. 
The incompressible-sediment case is simply a special case in which no 
gradient appears in the sediment because negligible compression occurs. 

DISCUSSION AND CONCLUSIONS 

The foregoing analysis of free settling, which included consideration 
of force action, has led to quite different conclusions from previously 
published analyses. The essential feature of the present argument is that 
it takes account of the fact that velocities cannot change without the 
action of forces, which, of course, is the first law of motion. 

Previous analyses of free settling were based on the assumption that 
settling velocity is a function of concentration. For present purposes it 
was necessary to interpret this assumption in force terms, and it was 
concluded above, under the heading Conventional Settling Velocity As- 
sumption, that it is equivalent to Assumptions 6 and 7, stated there. The 
writer does not know of any other interpretation which can be placed on 
the u = u(f) assumption, but if there is another reasonable interpretation, 
this could alter the conclusions reached. The other assumptions made in 
the present analysis were also made in previous analyses. 
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It is realized that many readers will be unable to accept the analysis 
presented purely on its logical merits. However, the writer has no choice 
but to ask readers to do this, since there appears to be no present experi- 
mental data which can show whether the present or previous analyses are 
correct, and it seems that it will not be an easy matter to obtain such data. 
The basic difference from previous results is that it is concluded that 
concentration gradients in batch thickening can only develop in the 
compression zone, not in the free-settling zone. Hence the experimental 
task is to determine whether compressive stresses exist in the graded- 
concentration zone or not, and the writer does not know of any direct 
and accurate method for doing this. Even in a slurry of glass spheres the 
short graded-concentration zones observed (9) could be due to com- 
pressive effects. In cubical packing the concentration obtained with identi- 
cal spheres is 0.524, while in tetragonal packing it is 0.741, and in random 
packing it is between these values. It is clearly possible for spheres to come 
into sliding contact before they reach their final concentration, so that a 
compressive effect could exist even in this apparently incompressible- 
sediment case. 

A further conclusion from the present study is that Coe and Clevenger’s 
Zones C and D must both be part of the compression zone. If this is cor- 
rect, why then does the compression zone appear to the eye in some 
cases as two distinct zones? A reasonable answer to this can be found from 
consideration of experimentally measured concentration versus depth 
curves for sediments at the completion of batch settling (e.g., Ref. 12, 
Fig. 2). Such curves show that, starting from the top of the sediment, the 
concentration initially increases very rapidly with depth but that the rate 
of increase with depth rapidly drops to a very low value. Since compres- 
sive stress increases with depth, this indicates that when the flocs first 
come into contact (the critical concentration), the structure is very easy 
to compress, but as the concentration increases the ease of compression 
rapidly decreases until the sediment is almost incompressible. Thus, in 
the upper part of the sediment, during the settling process, the concen- 
tration will change rapidly and could appear to the eye as a graded- 
concentration zone, while the lower part appears to be a separate uniform- 
concentration zone. 

Thus, based on Assumptions 1 to 6 ,  the main conclusion reached by 
the theoretical argument given here is that, starting with a uniform 
suspension, there is no way in which a concentration gradient can be 
formed in the free-settling zone. When a concentration gradient is formed 
it necessarily must be in the compression zone, because it is only in this 
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zone that retarding forces, necessary to produce a concentration increase, 
are available. 

APPENDIX A 

Derivation of Equations 

Total Material Balance 

Since both solid and liquid phases have constant density, there is no 
change in volume within the system, so that the total volumetric flux 
is the same at every level. That is, 

# + #1 = #, = constant 

I.e., 

i.e. 

# c  - f v  
1 - f  

w = -  

Therefore, the velocity of the solids relative to the liquid is given by 

which leads directly to Eq. (1). 

Solids Material Balance 

Consider two differentially-spaced, horizontal planes, labeled 1 and 2, 
and use subscripts 1 and 2 to denote values at these planes. At this stage, 
no specification is made to identify the planes as Eulerian, Lagrangian, 
Kynchian, etc. 

The volumetric solids balance (input rate = output rate + accumula- 
tion rate) on the differential layer defined by planes 1 and 2 is 

d 2  
fl(V1 - 2) = h ( v 2  - 2) + elf[ J1 
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The integral is approximated by the trapezoidal rule as o.5(f2 + f l )  
(x2 - x l ) .  Expanding the derivative of this and rearranging the equation 
gives 

Dividing throughout by (xz  - xi) and taking the limit as (x2 - x l )  --f 0 
gives 

which is the “general” material balance equation. As explained in the text, 
the Eulerian, Lagrangian, and Kynchian forms can be obtained directly 
from this by making the appropriate substitutions. 

Solids Momentum Balance 

In a similar way the solids momentum balance is written for a differential 
layer and is 

Approximating both integrals by the trapezoidal rule, expanding the time 
derivative, and rearranging : 

(1 3) 

Dividing throughout by (x2 - x l )  and taking the limit as (x2 - xl) --f 0, 

Substituting 4 = fv ,  expanding the three (p derivatives, and substituting 
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for dfldr from Eq. (2): 

DIXON 

(7) 

which is the “general” solids momentum balance equation. 

Discontinuity Equations 

Writing the solids material balance for a plane of discontinuity, using 
subscripts 1 and 2 to distinguish the two sides of the discontinuity, and 
noting that there is no accumulation in a plane: 

f 1 ( v 1  - $) = f 2 ( v z  - z) dx 

Rearranging, 

g - 4 2  - 41 

f 2  - f 1  

which gives the velocity of the plane. An alternative method for deriving 
this equation is to consider the discontinuity as defined by two planes 
1 and 2 initially a finite distance apart. The material balance is then the 
same as for a differential layer and leads to the Eq. (12) above. If the limit 
is taken as x1 + xz [but not dividing throughout by (xl - xz) first], the 
layer becomes a discontinuity and the equation becomes 

dx 
( 4 2  - 41) - ( f z  -fk& = 0 

leading directly to Eq. (6). 
The solids momentum balance for a discontinuity is obtained in a 

similar way to the above by letting x1 --+ xz in Eq. (13) above. Assuming 
that F, contains no spatial derivatives and so remains finite as x1 + xz, 
the equation becomes 

dx 
Tz - T I  = - P ( 4 z %  - 91%) + P ( 4 2  - 41)z 

Substituting for ax/& from Eq. (6) and rearranging, Eq. (1 1) is obtained. 
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APPENDIX B 

Virtual-Mass Drag Term 

When a particle is accelerating through a fluid it experiences a greater 
drag at a given velocity than if it were moving constantly at that velocity. 
This is due to the fact that the fluid boundary layer will be thinner than 
in the steady-state case, due to the delay associated with acceleration of 
the surrounding fluid. The additional drag due to acceleration of the 
particle relative to the fluid is the virtual-mass term. 

In a suspension the same effect will occur, but there is no information 
available at present on the correct form for the virtual-mass expression. 
It is usually assumed (6-8) to be given by the product of some function 
of the solids concentration (the virtual-mass coefficient) and the rate of 
change of the solid-liquid relative velocity. However, there is no knowl- 
edge of the way in which the virtual-mass coefficient varies with con- 
centration, nor is it clear which is the correct form for the rate of change 
of the relative velocity. Murray (6) mentions two forms, both of which are 
symmetrical in u and w ;  that is, interchanging u and w only changes the 
sign. It seems that the virtual-mass term must have this property since it 
must act equally but oppositely on the solid and liquid phases. Using the 
form which Murray chose for his analysis of fluidization, a virtual-mass 
term in the form 

is added to Eq. (7), where virtual-mass coefficient C is a positive function 
of J 

Thus Eq. (7) becomes 

and the discontinuity equation (Eq. 11) becomes 
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This equation is more complex than Eq. (1 l), but it still demonstrates 
that a discontinuity cannot occur between two concentrations which 
are both in free settling. All discontinuities predicted by various analyses 
have an increase in concentration associated with a decrease in velocity 
(u, U, and u*). Thus both terms in the braces in Eq. (15) have the same 
sign and so the right-hand side of Eq. (15) cannot be zero, which is required 
if both sides of the discontinuity are in free settling (z2 = z1 = 0). 

The same conclusion is reached if the other symmetrical form suggested 
by Murray for the virtual-mass term is used; namely, 

where 

SYMBOLS 

Positive direction is downward for all vector quantities 

Types of plane: Eulerian-fixed relative to the container 

f 
FB 

Fd 
9 
r 
S 

t 
U 

U* 
V 

W 
x 

Lagrangian-moving with the local solids velocity 
Kynchian-fixed concentration 

solids concentration, volume fraction, dimensionless 
g(p - p J  = net gravitational force per unit volume acting on the 
solids, N/m3 
liquid-drag force per unit volume acting on the solids, N/m3 
acceleration due to gravity, m/sec2 
solids dilution, dimensionless = l/f 
total volume of solids per unit cross-sectional area, below a re- 
ference Lagrangian plane, m 
time, sec 
velocity of solids relative to slurry volume-average velocity, m/sec 

velocity of solids relative to liquid, m/sec = u - w 
velocity of solids relative to container, m/sec 
velocity of liquid relative to container, m/sec 
distance below reference Eulerian plane, m 

= u - ( p t  
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Greek 

p solids density, kg/m3 
pl  liquid density, kg/m3 
7. 

4 
4l  
4r 

Cp, 

solids compressive stress based on total cross section, N/m2 
volumetric flux of solids, m/sec 
volumetric flux of liquid, m/sec 
solids volumetric flux relative to flux induced by the bulk flow, 
mlsec = 4 - f i t  
total volumetric flux, m/sec = volume-average velocity 

Subscripts 

1 above a discontinuity 
2 below a discontinuity 
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